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It is shown that the flavor quantum numbers of the basic elementary particles, 
leptons and quarks, as well as hadrons (with quarks as constituents), can be 
described with SU(2)• U(I) type of algebras. To treat simultaneously leptons 
and quarks (hadrons), we introduce the grace quantum number, G, in place of L 
(the total lepton quantum number) and B (the baryon quantum number). The 
formalism developed here requires the basic elementary particles to come in even 
numbers. For the case of four basic particles we have quantum numbers denoted 
as Q, X, and Y and their duals denoted as Q', X', and Y'. For the four leptons Q 
is the ordinary charge, while - Y and Y' are L~ (the muon lepton number) and 
L e (the electron lepton number), respectively. For the four quarks Q is the 
ordinary charge, Y the ordinary hypercharge, while X, a new quantum number, 
is simply the X charge, which, however, can be related to charm C. 

1. I N T R O D U C T I O N  

In  this article we wish to show that the flavor quan tum numbers  of  the 
basic elementary particles, quarks and leptons, can be associated with the 
S U ( 2 ) •  U(1) type of  algebras. Furthermore,  if it is required that the basic 
particles belong to the fundamental ,  2, representations of  corresponding 
SU(2)'s,  then the number  of  respective particles must  be even. 

In  this formalism the quarks are distinguished f rom leptons by  the 
grace quan tum number,  G, which for quarks (hadrons) is B (the ba ryon  
quan tum number)  and for leptons is L (the total lepton quan tum number).  

In  Section 2 some general properties of  an S U ( 2 ) •  U(1) algebra is 
discussed, where the grace quan tum number,  G, is in t roduced as the 
generator  of  U(1). 

Section 3 deals specifically with four leptons and four  quarks, respec- 
tively. 
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724 S61n 

Discussion and summary are given in Section 4. Here some of the 
properties of the quark and lepton quantum numbers for various interac- 
tions are briefly discussed. 

2. GENERALITIES 

We shall assume that the basic elementary particles are spin- l /2  
fermions. If there are n of such particles, then we further assume that they 
can be classified according to the fundamental, n, representation of some 
S U ( n ) ,  which is denoted as 

r 

r 

(1) 

Of course this does not imply that the masses of these particles are 
degenerate or that their interactions are necessarily invariant under S U(n)  

transformations. S U( n ) generators aA b ( a, b =  1 . . . . .  n )  satisfy 

_ c a  _ ac [~Ab,~ad]--Sb '-'td ~d ~b 

aA~=bAa, EaAa=O (2) 
a 

~ 

In terms of U(n)  generators aA b, aA b are  given as 

aA b =~A b -- n b ~. ciA ~ (3) 
c 

One easily verifies that -4's satisfy the same commutation rules as A's do in 
relation (2). 

The transformation properties of q,(x) and +t(x) under S U ( n )  are 
determined with 

=-%+(x) 

[aAb ' q;t(X )] =~,t(x )act a (4) 
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with n• n matrices o% (oa~ =bOla) given as 

725 

(aa b )f = 378 ~ - (1 /n  )8J8~ 

y%=o (5) 
a 

Similarly, ~d b will determine the transformation properties of ~(x)  and 
~*(x) under U(n) where, instead of ~ b in (4), we now have n •  matrices 
"ab (o6, =b6 , )  given as 

EaOla = I ( , )  (6) 
a 

Here I(n) is the n•  unit matrix. 
Relations (4) are equal time commutation relations (ETC) and in these 

specific cases "A b can be constructed from currents 

~j~*(x ) = ~7 (x)'~""ab~(x) (7) 

as 

% =fa' aj2(x) (s) 

Replacing in (8) "% with "ab, we get 

a~(X) =~/~ (x)'yp'aabl~(x) (9) 

from which "db can be defined in a similar manner. 
Algebra (2) is assumed to be valid generally, i.e., also for particles that 

are composites of basic particles described with ~p(x). In this case aA b can be 
given in terms of field operators of composite particles rather than ~p(x). 

With the generators of SU(n) algebra, we can get n ( n - 1 ) / 2  SU(2) 
algebras as follows: 

[~Ab,bA,] =aA a --bAt, 

["Aa --bAb,"Ab] = Z"Ab (10) 

[aA ,, -- bA b , bA ,, ] = --2hA, 

a<b,  a , b = l , 2 , . . . , n  
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These SU(2) algebras are not yet those from which to deduce the quantum 
numbers. Rather, we define (with q'i real) 

H+ = i eiq'iaiAbi 
i=1  

a i @aj (i--/=j), b i r ( i r  

aivabj, a i , b j = l , 2  .. . .  ,n ( l la)  

i , j = l , 2 , . . . , r  

2r=  { ( n -  1), n odd 
n, n even 

where clearly 

H_ =H*+ 

1 ~ (a~A biA ) ( l lb)  
t = [  

Thus  

[H+,H_]=2H 3 

[H3,H+_]=+-H+_ 
(12) 

which is an SU(2) algebra. In general there will be more than one such 
SU(2) algebra if n>2. However, two such SU(2) algebras with generators 
H+,  H 3 and H ' ,  H; are equivalent if 

(13) 

Now, demanding that the basic particles belong to the fundamental, 2, 
representation of SU(2) from (12), with the stipulation that no component 
of q~(x) from (1) remains invariant under the action of all H's  from (12), 
then n, the number of basic particles described by +(x), must be even. To 
see this let us look at 

[H 3, ~,(x)] ----- - h 3 ~ ( x  ) (14) 
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where diagonal n •  matrix h 3 is given as [compare with (1 lb)] 

1 ~ (ai%_bi%,) (15) h3=~. 
l = l  

From (5) we see that h 3 will be a diagonal matrix with values 1/2, say m 
times, and with values (-1/2) ,  say (n-m) times. Since 

Tr h 3 = 0 = r e ( I / 2 ) +  (n-m)(-- 1/2) 

we must have 

n=2m (16) 

which proves the assertion. 
With n=2m ( r=m) ,  the number N2m of 80(2) algebras (12) is 

1 (2m)! 
Nzm- 2 m! (17) 

giving 

N 2 = 1, N 4 =6,  N 6 =60, etc. (18) 

As we see, the number of SU(2) algebras (12) increases rather rapidly with 
the increase in the number of basic elementary particles. 

Next we define the grace, G, quantum number as 

2m 

G=g ~ aA a (19) 
a = l  

When g=  1, we are talking about leptons (~l =e ,  q~2 =Ue, etc.). Now G=L, 
the total lepton quantum number. When g=  1/3. we are talking about 
quarks (#1 =u,  +2 =d,  etc.), and G=B, the baryon quantum number. 

Now for a particular SU(2) algebra (12) we define a corresponding 
quantum number Q,/and its dual Q~ as 

�89 h (20) 

If Qn and Q~4 are to be quantum numbers associated with algebra (12), then 
the eigenstates of H 3 should be also the eigenstates of QH and Q~. 
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Consequently 

[G, n •  (21) 

that is, the operators H+, H_,  and H 3 are the generators of a SU(2) group, 
and G/2  is the generator of an U(1) group; together these form an 
SU(2)• U(1) group. 

Relation (20) actually consists of two equations, which can be cast as 

G = Q H - Q '  H (22) 

2H 3 = Q H + Q h  (23) 

Already from (22) and (23) we can deduce some very interesting 
properties of Qu and Q~t. For example, since the eigenvalues of 2H 3 are -+ 1 
no matter how many basic particles we have, the eigenvalues of Qu (Q~) 
numerically can assume only two values. Specifically, from (22) and (23) we 
have (with qu and qb denoting the eigenvalues of QH and Q~, respectively) 

g = qH -- q'H 

from which 

+--- l =qH + q' H 

qn=�89  (24a) 

q~ = �89 ( -g -+  1) (24b) 

Once g is specified, qn and qb are specified completely. 
Relations (24a) and (24b)will be particularly important when the roles 

of QH and Q~t are reversed; i.e., when we call Q~t a quantum number and 
QH its dual. As we shall see later, this will actually be the case with X and Y 
charges. 

3. CASES OF FOUR BASIC PARTICLES 

Here we shall apply the results from Section 2 to the case of four basic 
particles. 

Let us now denote the generators of six SU(2) subgroups of SU(4) as 
follows: 

= x r - 2 a 2 )  (25a) I+ 1,42, I_ ---2AI, 3 - 2 ~ 1 

V+ = ~A3, V_ =3A~, V 3 =�89 t --3A3) (25b) 

U+=ZA3, U_=3A2, U3=�89 (25c) 
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L+ ='A,, L _ : 4 A , ,  L 3 = � 8 9  (25d) 

M+ =2A4, M_ =4A2, M 3 : � 8 9  (25e) 

K+=3A4, K_ :4A3, K 3 = � 8 9  (25f) 

The notation used here is an extension of I, V, and U spin notations 
introduced by Meshkov, Levinson, and Lipkin (1963) within the context of 
SU(3). Following general formulas (1 la), (1 lb), (12), and (20), the SU(2)• 
U(1) generators with associated quantum number operators are then given 
as 

Z+ = ei4't1+ + eiq'KK + 

z _ = z * + ,  Z3=I3+K3 

G / 2 = Z  3 - X = X ' - Z  3 (26) 

R + =eig'vU+ +ei~'LL+ 

R _ = R t+ , R 3 = U 3 + L 3 

G / 2 = R  3 - Y =  Y ' - R  3 (27) 

W+ =eiq'vV+ +eiq'MM+ 

w_=w*+, w3= v3 +M3 

6 / 2  = W~ - Y= r ' -  w~ (28) 

Z+ = eiq'rI+ J-e --i'r 

2_ =Z,t+, 23 =13 --K 3 

G / 2  = Q -  23 = 23 - Q '  (29) 

k + = ei~uU+ +e -ieeLL_ 

G / 2 =  - - X - _ R  3 :/~3 +X' (30) 

I7r = e i,~ v V+ + e - iq'MM_ 

w _ :  w+*, V3-M3 

G / 2 = Q - 17V 3 = 17V 3 - Q ' (31 ) 
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In relations (26) to (31), Q, X, and Y are the charge, X-charge, and 
hypercharge quantum number operators, with Q', X', and Y' being their 
duals. We notice that, despite six SU(2)• U(1) algebras, we have actually 
only three quantum numbers. This follows from the fact that 

R 3 = W  3, Z a = - R  3, 1~3=23 (32) 

as can be easily verified with the help of (25a)-(25f). Of course, because 
SU(4) is of rank 3, we expect only three quantum numbers in addition to G. 

Now, since 

we get 

Q -  I~3 - Z3 + X=O 

Q+ X =  Z3 + I~3 = 2Ia 

where relations (25) have been utilized. By similar manipulations, we can get 
more than just this relation, and we quote them all here: 

Q+x=2/3 

Q + Y = 2 V  3 

Y-x=2G (33) 

Q - X = G - 2 K  3 

Q -  Y= G -  2 M  3 

Y + X =  - G + 2 L  3 (34) 

Similar relations can be obtained for Q', X', and Y' by replacing G with 
( - G )  in the above relations. 

3.1. Four l_~ptons. The field operators of four spin-l/2 leptons are 
arranged as 

e(x) 

(35) 
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i.e., #1 = e, etc. The important thing here is that since neutrinos appear only 
with negative (left-handed) helicities and antineutrinos only with positive 
(right-handed) helicities, the field operators Ve(X ) and vt,(x ) are left-handed 
field operators. 

Now identifying the grace quantum number, G, with the total lepton 
quantum number [g= 1 in relation (19)] 

4 

L =  2 az~a (36 )  
a = l  

we can readily deduce from relations (26)-(31) the eigenvalues of various 
quantum numbers. In Table I we give the eigenvalues that correspond to 
L, Q, X, Y, Q', x ' ,  and Y' for each of the four leptons: e, re, v,, and/~. One 
should notice that these eigenvalues are negative relative to the same 
eigenvalues for quarks (to be discussed subsequently). We notice from Table 
I that the electron and muon lepton number operators are given as 

L e =  Y'  (37a) 

L~ = - Y (37b) 

In view of (27) or (28), we have Y ' -  Y = L ,  which now reads 

Z =  Ze  -~- Zlz ( 3 8 )  

It is remarkable how SU(2)X U(1) algebras (27) and (28) define L, and L e 
and relate them in a natural way to L. Experimentally, L e and Lg (Y' and 
Y) are separately conserved. Q, of course, is always conserved, and because 
Q -  Q' = L, Q' is also conserved as far as leptons are concerned. What about 
X and X'? As far as leptons are concerned, X and X' are clearly not 
conserved. If they were that would mean that the net transitions e ~v,  and 
g ~ v  e are allowed, which, however, would violate the L e and L, conserva- 
tions. 

From SU(2)X U(1) algebras (29) and (31) we should be able to deduce 
the leptonic charge-changing current that is important in the usual weak 
interactions. 

TABLE I. The Eigenvalues of Quantum Number Operators for the Case of Four Leptons 

L Q X Y Q' x '  Y' 

e 1 1 0 0 0 1 1 
v e 1 0 - 1  0 - 1  0 1 
vt, 1 0 0 - I  - 1  1 0 
ix 1 1 - 1  - 1  0 0 0 
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The charge-changing current that corresponds to 2~+ from (29) is 

Jt'*(x; Z§ (x)yt*l,t,(x) (39) 

while the charge-changing current that corresponds to I,V+ from (31) is 

S~(x;lYd+)=ei*v~(x)7~vu(x)+e-iOM~(x)y~ve(x)  (40) 

One should note that since the Pe and u~ fields in (39) and (40) are 
left-handed, the e and/* fields are effectively left-handed also; i.e., (30) and 
(40) are effectively V - A  currents. Consequently, currents (39) and (40) are 
good candidates for a charge-changing leptonic current necessary to de- 
scribe the usual weak interactions. 

To make a final choice, let us analyze the conservation of quantum 
numbers by these currents. L e and L, (Y' and Y) are clearly conserved by 
J*'(x; Z+), while X and X' are not. On the other hand, J~'(x; I,V+), while 
conserving X and X', is violating the conservation of L e and L~. Hence the 
charge-changing leptonic current entering into the usual weak interactions is 

P'(x; +)=J~ ' (x ;  Z+)I~,,=,t,K=o =e(x )y~Ve(X)+g  (x)~[~v~,(x) (41) 

since experimentally L e and L~, are conserved. In (41) we have set the phases 
equal to zero, which is equivalent to absorbing them into the field operators. 

It is interesting to note that current (41) makes X and X' "maximally" 
nonconserved by weak interactions in which leptons participate. 

3.2. Four Quarks. Here the field operators of four spin-1/2 quarks are 
arranged as 

+(x)= 

u(x) 
d(x) 
,(x) 
c(x) 

(42) 

that is +1 =u,  +2 =d,  etc. Here the grace quantum number, G, has to be 
identified with the baryon quantum number [g= 1/3 in relation (19)] 

1 4 
n~- "5 ~ a~a (43) 

a=l 
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As in the case of leptons, from relations (26)-(31) we can easily get 
eigenvalues for Q, x,  Y, Q', x ' ,  and Y'. Before we do that let us define the 
charm, C, and the strangeness, S, quantum numbers. The charm quantum 
number, C, we define as 

C= � 8 9  Y) (44) 

Utilizing (33) and (34), or simply (26)-(31) (with G replaced by B), we get 

c= �89  3-z3 - ) 

=-~B+ �89 ( M  3 - V 3 ) - K  3 ----4A 4 (45) 

On the other hand, from the first relation in (33) we have X=213-  Q, 
which when substituted into (44) gives 

Q = C+I 3 + Y/2 (46) 

which is a familiar relation. 
In a similar manner we can define strangeness quantum number S as 

Looking at (44) we see that 

Working out (48) we get 

(47) S = � 8 9  

S= C+ Y - B  (48) 

S =  -3.,~ 3 (49) 

which is a familiar definition of S. 
In Table II we give the eigenvalues that correspond to B, Q, X, Y, 

Q', x ' ,  Y', S, and C for each of the quarks, u (up), d (down), s (strange), and 

TABLE II. The EigenvNues of Quantum Number Operators for the Case of Four Quarks 

B Q X Y C S Q' x '  Y' 

u 1/3 2/3 1/3 1/3 0 0 1/3 2/3 2/3 
d 1/3 -1/3  -2/3 1/3 0 0 -2/3 -1/3 2/3 
s l/3 -1/3  1/3 -2/3  0 -1 -2/3 2/3 -1/3 
c 1/3 2/3 -2/3  -2/3 1 0 1/3 -1/3 -1/3  
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c (charmed). The eigenvalues for Q, X, etc., are negative relative to the 
corresponding eigenvalues for leptons from Table I. 

Let us point out, however, that if one chooses B, Q, X, and Y as 
quantum number operators, then S and C are redundant, as one sees from 
relations (44) and (47). 

As we know from relations (26)-(31), to each quantum number there 
corresponds two SU(2)•  U(1) algebras. Specifically, for Q or Q' we have 
(29) and (31). Let us try to "unify" (29) and (31) into one SU(2)•  U(1) 
algebra. First we define 

F+ = cos OcZ + + sin 0~I~+ 

F_ =F+* (50a) 

where the rotation angle 0 c is identified with the Cabibbo angle. Now in 
order that 

[ F + , F_ I = 2 F 3, F3=Z3=I7/3 (50b) 

B / 2  = Q -  F 3 = F  3 - Q '  (5Oc) 

we must have 

[e+ , w_] + [ <  , e_] =o (51) 

It is easily seen that (51) is satisfied if 

~, +q'M = ~r+q'v +q'K (52) 

The vector current that corresponds to the F generator is 

J~'(x; F _ ) = c o s O ~ [ e - i 4 " d ( x ) y ~ ' u ( x ) + e i ' ~ K g ( x ) 7 % ( x ) ]  

+ s i n O c [ e - ' ~ ' v g ( x ) 7 ~ ' u ( x ) + e i ~ " d ( x ) 7 % ( x ) ]  (53) 

Invoking constraint (52), relation (53) can be understood in terms of the 
Cabibbo transformed fields, either 

ur x ) = e -i,~,[ cos Ocu( x ) - sin O~e i( *~ + r x )] 

Q ( x ) = e - ' ~ [ c o s O c e i ( ~ v + ~ x ) c ( x ) + s i n O c u ( x ) ]  (54a) 
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o r  

where now 

sc( x ):e-iCx[cosOcs( x )-sinScei(V',-r x ) ] 

dc( x ):eiq'v[cosS~ei(ee'-e~)d( x ) + sin O~s( x )] (54b) 

J~'(x; F_)=dc(x)'~'u(x)+gc(x)y%(x) 

=,7(x)v%(x)  +~(x)r%(x)  (53') 

Now all the phase factors in (54a) and (54b) can be absorbed into the field 
operators, which is equivalent to setting 

%=r ~M=~ (55) 

Current J~'(x; F_), however, is not yet the charge-changing quark 
(hadron) weak current since it does not have a built-in V-A structure, which 
for leptons was automatic because of the masslessness of neutrinos. Hence, 
in order to get the charge-changing quark (hadron) current relevant in usual 
weak interactions, we must introduce the V-A structure by hand. This 
simply amounts to changing -t" into y"}(1 +'f5) in (53') giving 

h~(x; - ) =  d~(x)�89 +ys)u(x)+5~(x)�89162 +Ys)c(x) 

=d(x)�89189 (56) 

Finally we write down the equal time commutators between h"(x; - )  
and Q, x, and Y, respectively: 

[Q, h~(x; - ) ]=  -h~(x; - )  

Ix, h~(x;-)] = cos 0c[~(x)~q(1 + ~5)c(x) 

--d(x)y"�89 +ys)u(x) ]  

[Y, h"(x; - ) ]  = -sin0c[d(x)v"�89 + ~'5)c(x) 

+~(x)v"}(1 +ys)u(x)] 

As the interaction Lagrangian density for the usual weak interactions of 
quarks is proportional to h~(x;-)h~(x;-) ,  it is immediately evident that 
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while Q is conserved, X and Y will not be conserved, cos 0 c and sin 0 C being 
the "strengths" of nonconservation, respectively. 

4. DISCUSSION AND SUMMARY 

We have shown that SU(2)X U(1) algebras yield all known quantum 
numbers of quarks and leptons. In the course of our discussion we have 
encountered a new quantum number, the X charge, which, however, for the 
case of four quarks can be related to the charm quantum number, C. For 
four leptons the Y and Y' quantum numbers were shown to be equivalent 
with ( -L~)  and Ze, respectively. The X and X' charges in the case of 
leptons are new quantum numbers, and as far as the charged leptonic 
current processes are concerned (weak interactions), they are "maximally" 
nonconserved. 

Of course, rather than talking about the Q, X, and Y quantum number 
operators separately for leptons and quarks, we can define the "total" 
quantum number operators as (with q standing for "quark" ("hadron") and 
/ standing for lepton) 

Qr =Qq -QI  

X =Xq-X, 

YT = Yq - YI (57) 

Here we took into account that the eigenvalues of Qt, Xt, and Yt are in 
negative units with respect to the eigenvalues of Qq, Xq, and Yq, respec- 
tively. 

One thing that we can say immediately is that QT must be conserved in 
all interactions. The quantum numbers X r and Yr, however, are not 
universally conserved. Specifically, while Yl (Y/) should always be con- 
served, the same is not true for Yq (Yq'). Nevertheless, the total quantum 
number operators as defined by (57) might be very useful in classifications 
of reactions. For example, let us take the following (weak interaction) 
process: 

e -  +P-~ve +N (58) 

One easily deduces that reaction (58) conserves Qr, Xr, and Yr by taking 
into account that proton and neutron states can be written as (supressing 
the color indices) 

IP>=luud>, IN):ludd) 
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However, the weak process 

K + ~ e + + ee + ~r ~ (59) 

while of course conserving Qr, changes the eigenvalues of X r and YT by • 1, 
respectively. In deducing this one notices that 

Ig+> =lu~ > , 1~~ 
In strong interactions in which only hadrons (quarks) participate Qr (=  
Qq), X T (=Sq),  and Yr (=  Yq) are expected to be conserved exactly. For 
example, the conservation of X r is simply a consequence of isospin and 
charge conservation, since from general relation (33) we can now write 

Xq =21~-Qq (60) 

As an illustration of the X r conservation by strong interactions, let us 
analyze the reaction 

~.+ +N__,KO,+ + y + , o  (61) 

Since 

I~+>=[ud>, Ig~ I~+>=luus > 

[YP) : 2-1/2( [I ud> + I du> 11,> } 

we see that the eigenvalues for Xq are 

Xq(N)=Xq(K~ = -1 ,  Xq(~r+)=Xq(Z+)=l 

Xq(K +)=Xq(y~~ 

With these one indeed verifies that the Xq charge is conserved by (61). 
The electromagnetic interactions of leptons and quarks (hadrons) con- 

serve Qr, Xr, and Yr. This simply follows because the electromagnetic 
interactions are "minimal," i.e., they are strictly proportional to the electric 
charges, implying that Qr, xr ,  and Yr are the "constants of motion." By 
similar arguments one concludes that the neutral current interactions of 
leptons and quarks (hadrons) should conserve Qr, Xr, and Yr. 

The usefulness of the dual quantum number operators was already 
demonstrated for four leptons, where Y[ was identified with Z e. Further- 
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more, the existence of the dual electric charge quantum number, Q', led us 
to believe in the existence of dual electromagnetism (Soln, 1979). Subse- 
quently, a unified gauge theory of weak, electromagnetic, and dual electro- 
magnetic interactions was formulated (Soln, 1980), showing a very good 
agreement with experiments (Soln, 1979, 1980). 

As our SU(2)X U(1) type of algebras require the basic elementary 
particles to come in even numbers, we see why the GIM (Glashow, 
Iliopoulos, and Maiani, 1970) mechanism required at least four quarks when 
extending the gauge electro-weak lepton models of Weinberg (1967) and 
Salam (1968) to include also hadrons. 

In summary we can say that SU(2)X U(1) algebras of flavor quantum 
numbers appear to be useful not only in the classification of various 
processes with respect to known elementary particle interactions but also in 
writing down the unified gauge theories of these interactions. 
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